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Abstract 

A cross flow drag coefficient model for finite length body-strake combinations has been 
developed. The basis for the new model is transonic test results of two-dimensional body-
strake combination by Macha. Adjustment for finite body was done based on the 
empirical correlation for circular bodies by Jorgensen. Additional adjustment considers 
the relatively large cross flow drag coefficient of strake alone at subsonic Mach numbers.  
 
The model was incorporated in component buildup prediction method. The stability 
derivatives were estimated using the Missile Datcom code. The inviscid contributions to 
the normal-force and pitching-moment coefficients are based on these stability 
derivatives. The contribution of the separated cross flow considers body sections with 
strakes as one unit and uses the new drag coefficient. The method was applied to seven 
configurations at Mach numbers between 0.9 and 6.8. In most cases good agreements was 
obtained between predictions by the Missile Datcom code, the new method and test data. 
The present method gives better results than the Missile Datcom code for two 
configurations that feature rectangular, or mostly rectangular, strakes. It was observes 
that when the cross flow Mach number is higher than 1.0, the present method 
overestimates the normal-force and the stability margin. This implies that the present 
cross flow drag coefficient model needs further adjustment. 
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Nomenclature 

a defined by Eqn. (B.6.a) 

A defined by Eqn. (B.6.b) 

b maximum inclusive span 

B width of configuration 

c chord of strake 

CDc cross-flow drag coefficient of a finite body 

Cdo cross-flow drag coefficient of circular cylinder (2-D) 

CDo cross-flow drag coefficient of finite circular body 

Cd| cross-flow drag coefficient of isolated strake (2-D) 

Cd1  cross-flow drag coefficients for s/d→1.0 (2-D) 

Cd2 cross-flow drag coefficients for s/d=2.0 (2-D) 

Cdφ cross-flow drag coefficient of body-strake cross section (2-D)  

CDφ cross-flow drag coefficient of finite length body-strake combination. 

CL lift coefficient 

Cm pitching-moment coefficient 

CN normal-force coefficient 

d body diameter 

dR reference diameter, maximum body diameter 

ℓ length of body 

M Mach number 

s inclusive span of strake  

SP plan-form area 

SR reference area, (π/4)dR
2

x longitudinal coordinate 

xo location of tip of strake 

xR reference point for pitching-moment and center of pressure 
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Greek 

α angle of attack 

Subscripts 

1 contribution of inviscid flow 

2 contribution of separated cross-flow 

New. Newtonian theory 

 

Designation of the components 

 

B body alone 

B-S body-strake combination 

S strake alone 

SU strake unit, strakes with mutual effects with the body 
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Introduction 

In recent years there is a growing interest in missile configurations that feature strakes, 
rather than wings. The advantage of strakes is their small spans, resulting small volume, 
which is beneficial for internal carriage and launching from canisters. 
 
Codes that are based on component buildup methodologies estimate the linear and 
nonlinear characteristics of the components separately. Thus, the nonlinear contributions 
of bodies and wings are estimated using different methods or databases. Flow 
visualization of body-strake combinations, by Verle,1 shows that the leeward vortex wake 
of body-strake combination is common to the two components, as depicted in Fig. 1. This 
implies that the contribution of the separated cross flow to the normal-force of the 
combination may be different than the sum of the contributions of the components. 
 
Literature survey yielded only one experimental study of the cross-flow over straked 
circular cylinders.  Macha2, 3 measured the cross-flow drag coefficient of plain cylinders 
and in combination with strakes at Mach numbers between 0.6 and 1.0 and span to 
diameter ratios up to 2.0. 
 
The objective of the present study is to explore the benefit of using unified body-strake 
cross-flow drag coefficient in the estimation of the normal-force and center of pressure 
location of such configurations. 
 

 
Fig. 1: Flow visualization of the leeward side of a body-strake combination, from Verle. 
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Cross-Flow Drag coefficient 

The analysis that follows refers to and depends upon the cross-flow drag coefficient of 
circular cylinders and two dimensional strips, representing isolated strakes. Thus, these 
two basic shapes are being reviewed first. 

Circular Cylinders 
Many researchers measured cross flow drag of circular cylinders, Cdo, and several 
authors, e. g. Hoerner,2 (Chapters XV and XVI) Jorgensen,3 and the British ESDU4 
compiled available experimentally obtained drag coefficient data. The latter will be used 
in the present study because of the extant of data fused into it and the accurate 
presentation. See Fig 2. 

Plain Strakes 
The main source for cross flow drag coefficient of a strake, CD|, is Lindsey5 who covered 
Mach numbers up to 0.7. Hoerner2 compiled the available data. (Chapter 15-3) His 
proposed curve for the subsonic range is presented in Fig. 4 that is discussed in the next 
section. The value of CD| in the subsonic region is about 2.0. 

Circular-Cylinder-Strake combinations 
As mentioned before, literature survey yielded only one study of the cross-flow drag 
coefficients of body-strake combinations. Macha6, 7 measured pressure distributions on 
plain circular cylinders and in combination with strakes. He integrated the pressure 
distributions to obtain drag coefficients. His tests covered Mach number range of 0.6 to 
1.05 and inclusive strake height to diameter (=s/d) ratios of 1.2, 1.55, and 2.0. For Mach 
numbers 0.6, 0.7, and 0.8 all three stakes were tested. For Mach numbers 0.9 and 1.0, 
only the narrower two were tested and at Mach number of 1.05, only one. Plain cylinders 
of various diameters were also tested at Mach numbers between 0.6 and 1.2. The results 
enabled him to correct for blockage effects. Since only one diameter was tested with 
strakes, the corrections for these cases were based on the results obtained with plain 
cylinders. 
 

   Schematic from Macha. 
 
Fig. 2 also compares Macha’s results for circular cylinders with the correlation of Ref. 4. 
Good agreement is apparent, except for M=0.9. This finding corroborates the quality of 
these data. 
 
Fig. 3, reproduced from Ref. 6, shows the dependence of cross flow drag coefficients on 
strake inclusive width-to-diameter ration, for six Mach numbers. It is apparent that 
Macha included in his charts plain cylinder data at s/r=1.0 and that his curves consider 
these data. In Section 5.5 of Ref. 6 he refers to the experimentally obtained 
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circumferential pressure distribution and states: “even the smallest strake height-to-
diameter ratio, s/d, of 1.2 the strake edge is the dividing point between the positive and 
suction pressures.” This conclusion is accepted because the edges of the strakes 
determine the location of the separation points, which cause the pressure jump. It is 
conjectured that even very narrow strakes will force separation at its edges. Thus, the 
present curve fitting does not consider no-strake results. Rather, straight lines were fitted 
to the available data and were extrapolated to s/d=1.0. Since the data are sparse, eye-ball 
approximation was used.  Since there is only one datum for Mach number of 1.05, it was 
not included. The present fitted straight lines were added to Fig. 3. The available data for 
Cd| at Mach numbers of 0.6 and 0.7 are also presented for comparison. 
 
The values of Cdφ at s/d=1.0 are named Cd1 and those at s/d=2.0, Cd2. The present model 
for cross flow drag coefficient of body-strake combinations is 

Cdφ = Cd1+(Cd2 –Cd1)(s/d-1.0), 
 = (2.0-s/d)Cd1+(s/d-1.0)Cd2      (1) 

 
The line for M=0.9 is anomalous, as is Cdo for that Mach number, and was not taken in 
further considerations. It is also apparent that Cd2 is close to Cd|. This implies that for 
s/d≥2.0 the cross flow drag coefficient should be about that of a plain strake.  
 
Cd1 and Cd2 are presented in Fig. 4, with Cdo as reference. It is apparent that they follow 
the trends of Cdo in the transonic region. The ratios K1=Cd1/Cdo and K2=Cd2/Cdo were 
evaluated for the three subsonic Mach numbers and their averages are K1=1.125 and 
K2=1.34. The use of these two factors is discussed in the next section. 
 
Also shown in Fig. 4 is Cd| from Hoerner2. As indicated before, in the subsonic region, 
Cd2 ≈Cd|.  
 
Jorgensen2, 8 estimates the cross-flow drag coefficient on a winged (or straked) circular 
body by considering the normal-force acting on the cross sections, as calculated by the 
Newtonian theory. 
 
 Cdφ = [CNφ/CNo]New Cdo.       (2) 
With  
 [CNφ/ CNo]Ne = (3/2)(s/d-1/3),   based on d, 
   = (3/2)[1.0-(1/3)(d/s)],  based on s.   (3) 
 
This relationship yields Cd1=Cdo and Cd2=1.25Cdo. Recall that the present findings are  
K1=1.125 and K2=1.34. Namely, the present estimate of Cdφ is larger than Jorgensen’s 
by a factor of 1.125 to 1.07. 
 
Some strakes are actually highly swept, low aspect ratio, Δ wings. Others feature such 
front ends, followed by rectangular rear parts. In the case of strakes with strong sweep, it 
is expected that the added normal force, due to separation along the leading and the side 
edges of the strakes, will be determined by the leading-edge suction analogy devised by 
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Polhamous.9 His prediction, at low speeds, is analogous to CD|=π. Leading-edge suction 
decreases as Mach number increases and diminishes when the leading-edge becomes 
sonic. Nevertheless no attempt was done to include this effect in the present analysis.  
 
Note: Eqn. (1) is valid for s/d≤2.0. For larger values of s/d, Cdφ=Cd2. However, large 
values of s/d should be considered wings rather than strakes. 

Adjustment for Finite Bodies 
It is known e. g. Welsh10 and Jorgensen,3 that cross flow drag coefficient of finite bodies 
is smaller than that of matching two dimensional bodies. Cross flow drag proportionality 
factor, defined as the ratio between the cross flow drag coefficients of finite to infinite 
bodies was introduced. Jorgensen3 processed his own experimentally obtained normal-
force curves from a previous study (Ref. 11) and obtained an effective finite body cross 
flow drag coefficient. His results, from Fig. 5 of Ref. 3 are presented in Fig. 5 and 
compared with Cdo from Ref. 4. It is apparent that in the transonic region there is a 
noticeable difference between the cross flow drag coefficients of finite and infinite 
bodies. 
 
Based on the available data, an arbitrary model was selected for this work. It consists of 
“sewing” parts of the available data: 
 

Table 1: Sources of the present cross flow drag coefficient for finite bodies 
 

M range source 
0.0 – 0.7 ESDU 
0.7 – 0.9 A constant value connecting local 

peaks of the two sources 
0.9 – 1.2 Jorgensen 

1.2 and up ESDU 
 
 The present model is presented in Fig. 5. It features a dip around M=0.9, and a peak 
around M=1.1. No smoothing was introduced into the model. 
 
Finite body models for CD1 and CD2 were obtained by multiplying finite circular body 
model by K1 and K2, respectfully.  The subsonic branch of the latter was modified to 
account for the observed proximity of Cd2 to Cd| in that range. The models are depicted in 
Fig. 6 and a tabular form is shown in Appendix A. 
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Fig. 2: The dependence of Cdo on Mach number, from ESDU and Macha. 
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Fig. 3: The dependence of Cdφ on strake width to diameter ratio, from Macha. 
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Cd of straked cylinders (2-D)
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Fig. 4: Dependence of Cd1 and Cd2 on Mach number. 
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Fig. 5: Comparison between Jorgensen’s CDo and Cdo.
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CDc  (Finite body)
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Fig. 6: Present cross flow drag coefficient models. 
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Analysis 

Contributions Buildup 
Following previous researchers, e. g. USAF Datcom12 and Hemsch13, the estimation of 
the normal-force and pitching-moment coefficients consider two contributions. The first 
one is that of the inviscid or attached flow, and the second one is due to viscous effects or 
cross- flow separation. 
 

1. The non viscous contributions are 
 

CN1 = ½ CNα ⋅ sin(2α)        (4.a) 
Cm1 = ½ Cmα ⋅ sin(2α)        (4.b) 

 
The two stability derivatives in Eqns. (4) were obtained using the Missile Datcom code 
(M-Dat, Ref. 14) for zero angle of attack. 
 

2. The present estimation of the contribution of the separated cross flow 
distinguishes between body sections without and with strakes. For the former, 
namely for plain circular body, CDo is taken into account, and for the latter, CDφ. 
These two drag coefficients depend on Mc=M sinα. Thus, 

 

CN2 = ( o

ℓ

∫ CDc B dx)⋅ sin2α /SR      (5.a) 

Cm2 = ( o

ℓ

∫ CDc B (x-xR) dx)⋅ sin2α /(dRSR)     (5.b) 
 

Where 
 
  ⎧ CDo for plain body sections, 
 CDc = ⎨         (6) 
  ⎩ CDφ for body sections with strakes. 
 
  ⎧ d  for plain body sections, 
 B = ⎨         (7) 
  ⎩ s  for body sections with strakes. 

Computations 
Test configurations were divided to longitudinal sections according to their cross 
sectional shape. For triangular strakes, analytical integration of Eqns. (5.a) and (5.b) were 
performed to account for the varying span and s/d ratio. For details see appendix B. For 
rectangular strakes, B=s and Eqn. (1) becomes a constant along the body-strake sections. 
A service code that calculates Mc for a given Mach number and angles of attach and 
provides values of the three cross flow drag coefficients was used. The rest of the 
computations were done on an excel worksheets. 
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Validation 

Three types of configurations were selected for the validation of the proposed method: 
 

1. Conical body and Δ wing combinations having common apex. These 
configurations feature constant s/d, and common center of pressure for both 
components and both contributions, namely the inviscid and viscous. 
(Benchmarks 1-2) 

2. Bodies and rectangular, or mostly rectangular, strakes. (Benchmarks 3-5) 
3. Bodies with Δ strake combinations. (Benchmarks 6-7) 

 
 
For the first two benchmarks CDφ is constant along the configuration and only depends on 
Mc. In these cases Eqn. (5.a) reduces to 

 
CN2 = (SP/SR) ⋅ CDc ⋅ sin2α       (8) 

 
The center of pressure is at 2/3 the length. 

 
Also, since these configurations are slender, generalized slender body theory, (s-b-t) e. g. 
Nielsen,14 and Ashley and Landahl,15 was used for a second estimation of the normal-
force curve slope. 

 
 CNα = 2(s/d)2[1-(d/s)2+(s/d)4]       (9) 

 

Benchmark 1 
Jorgensen16, in NACA TN 4045, tested a cone-Δ-strake combination at Mach numbers of 
1.97 and 2.94. A schematic of his test model is depicted in Fig. 7 and the M-Dat 
geometrical model is shown in Fig. 8. This model assures the nominal s/d ratio, which is 
needed for the evaluation of body-strake mutual interference factors. 
 
The fineness ratio of the conical body is 3.67, and s/d=1.84.  
 
The M-Dat estimates of the normal-force curve slopes are given in Table 1. The 
estimated center of pressure location is very close to 2/3 body length, as expected. 

 
Table 2 Normal-force curve slope of benchmark 1 configuration 

 
M CNα
 M-Dat 

1.97 4.58 
2.94 4.33 
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For s/d=1.84, CDφ = 0.16CD1+0.84CD2. 
 
Comparisons between predictions and test data are presented in the two parts of Fig. 9. 
For M=1.97, the agreements between the two predictions and test data are very good. For 
M=2.94, the two predictions are very close. However, test data is about linear (CL vs. α) 
while the predictions show some nonlinearity, causing a slight over-estimate of the lift 
coefficient. 

 
 
 

 
Fig. 7: Schematic of benchmark configuration 1, from Jorgensen. 

 

 
 

Fig. 8: M-Datcom geometrical model of benchmark 1. 
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Fig. 9: Comparison between predictions and test data for benchmark 1, 
a) M=1.97; and b) M=2.94. 
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Benchmark 2 
Foster17, in NASA TM-X-167, tested a cone-Δ-strake combination at Mach numbers of 
1.41 and 2.01. A schematic of his test model is depicted in Fig. 10. The conical body has 
fineness ratio of 4.0, and s/d=2.0, yielding SP/So=10.19. The M-Dat geometrical model is 
shown in Fig. 11. The estimates of the normal-force curve slopes are given in Table 2. 

 
Table 3 Normal-force curve slope of benchmark 2configuration 

 
M CNα
 M-dat s-b-t 

1.41 6.07 6.5 
2.01 5.95 6.5 

  
Since s/d=2.0, CDφ = CD2. 
 
Comparisons between analysis and test data are shown in Fig. 12. For M=1.41, M-Dat 
predicts CN which is up to 10.0% lower than the data. The present estimates are up to 
15.0% lower. For M=2.01 the two predictions are in very good agreement with the data.  
 
 
 

 
Fig. 10: Schematic of benchmark 2 configuration, from Foster. 

 

 
Fig. 11: M-Datcom geometrical model of benchmark 2. 
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Fig. 12: Comparison between predictions and test data for benchmark 2, 
a) M=1.41; and b) M=2.01. 
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Benchmark 3 
Reference 11 by Jorgensen contains the database that was used by him to devise the 
effect of finite body length on the cross flow drag coefficient. In Ref. 19 he tested the 
same bodies in combination with narrow strakes. Configuration N1-C1-S was selected 
and is presented in Fig. 13. The geometry of the input model is shown in Fig. 14. The 
chord of the strake matches the length of the cylindrical afterbody. Span to diameter ratio 
is 1.2. Reference point for center of pressure location is body base. 
 
The stability derivatives of the body alone and of the configuration, as obtained by the M-
Dat code are given in table 4. 
 

Table 4  Stability derivatives of benchmark 3 configuration 
 

 Body alone Body-strake 
M CNα Cmα CNα Cmα
0.9 2.49 18.07 2.94 20.40 
1.2 2.61 19.57 2.97 21.10 
1.5 2.48 20.97 6.80 39.22 
2.0 2.75 23.27 5.52 24.98 

 
It is apparent that the normal-force curve slope of the configuration is much larger at the 
two highest Mach numbers than those of the low ones. This is attributed to a jump in the 
contribution of the fins alone between Mach number 1.2 and 1.5. For the transonic Mach 
numbers, the normal-force curve slope of the isolated fins is close to those predicted by 
slender wing theory. In the supersonic range, the values obtained by the code are an order 
of magnitude larger than those expected by the theory. (The aspect ratio of a pair of 
strakes is about 0.03.) 
 
Comparisons between predictions and test data are presented in the first four parts of Fig. 
15, for Mach numbers of 0.9, 1.2, 1.5 and 2.0. At the two low Mach numbers, the present 
method predicts well the normal-force coefficient, including the local trends, to angles of 
attack of 50 deg. The estimate of the M-Dat is about 15% lower than the data. At the 
higher Mach numbers, M-Dat and present predictions of the normal-force coefficient at 
small and moderate angles of attack are higher than test data. At large angles of attack, 
the present prediction departs from the test data and remains higher than the data. The 
departure starts at angles of attack where the cross flow Mach number is about 1.0. At 
this Mach number the cross flow drag coefficients feature a second hump. Generally, the 
center of pressure location is well predicted by both methods, except for the dip which is 
characteristic for the two low Mach numbers. 
 
The difference in the initial slopes of the normal-force curves, which was found at M=1.5 
and M=2.0, develops noticeable differences at high angles of attack as well. An 
independent estimate of the slope was sought. Literature search for reliable data for very 
low aspect ratio rectangular wings did not yield result. Thus, a hybrid estimate was used. 
The contribution of the body alone was obtained from the M-Dat code. The contribution 
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of the strake unit (strake and mutual interference with the body was estimated using 
generalized s-b-t. 
 
 CNα (B-S) = 2⋅(b/d)2⋅[1-(d/b)2+(d/b)4]      (10.a) 
  
 CNα (B)     = 2.0        (10.b) 
 
 CNα (SU)   = CNα (B-S) - CNα (B) 

CNα (SU)   = 2⋅(b/d)2⋅[1-2(d/b)2+(d/b)4] 
 CNα (SU)   = 2⋅(b/d)2⋅[1-(d/b)2]2      (11) 
 

For b/d = 1.2, CNα (SU) = 0.269. Thus, for the present case 
  
 CNα (B-S) = CNα(B) + 0.269.       (12) 
 
The hybrid estimate of CNα is presented in Table 5. For the lower Mach numbers, the 
agreement between the two estimates is good. For the higher Mach numbers, the hybrid 
estimates are smaller than predicted by the M-Dat code. Parts (e) and (f) of Fig. 15 show 
repeated comparisons between test data and the present method with CNα from both M-
Dat, (Present-1) and revised CNα. (Present-2) It is apparent that the estimates that are 
based on the hybrid approach improves the agreement with test data at small and 
moderate angles of attack. 
 

Table 5 Comparison of normal-force curve slopes 
 

M B,  M-Dat S,  M-Dat B-S,  M-Dat B-S,  Hybr. 
0.9 2.49 0.19 2.94 2.76 
1.2 2.61 0.09 2.97 2.88 
1.5 2.48 1.27 6.80 2.75 
2.0 2.75 0.82 5.52 3.02 

 
At larger angles of attack, the revised CN curves still deviate from the test data. As noted 
before, the deviation occurs around Mc=1.0. This may imply that the cross flow drag 
coefficient of the present model is a little too high at low supersonic Mach numbers. 
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Fig. 13: Schematic of benchmark 3 configuration, from Jorgensen. 

 
 

 
Fig. 14: M-Datcom geometrical model for benchmark 3. 
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Fig. 15: Comparison between predictions and test data for benchmark 3, 

a) M=0.9. 
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Fig. 15: Comparison between predictions and test data for benchmark 3, 
b) M=1.2. 
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Fig. 15: Comparison between predictions and test data for benchmark 3, 
c) M=1.5. 
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Fig. 15: Comparison between predictions and test data for benchmark 3, 
d) M=2.0. 
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Fig. 15: Repeated comparison between predictions and test data, benchmark 3, 

e) M=1.5. 
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Fig. 15: Repeated comparison between predictions and test data, benchmark 3, 

f) M=2.0. 
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Benchmark 4 
From the many configurations that were tested by Robinson,20 in NACA RM L57D19, 
the three that feature rectangular strakes were selected. Mach number of his tests was 
2.01. Schematics of the body and the strakes are depicted in the two parts of Fig. 17. The 
body consists of a tangent ogive nose with a fineness ratio of 3.5 and a cylindrical 
afterbody with fineness ratio of 6.5. All strakes have chord to diameter ratio of 4.333. 
Their span-to-diameter ratios are given in Table 4. 
 

Table 5  Strake span to diameter ratios for benchmark 4 configurations 
 

Configuration b/d 
F7-W6-A1 4/3=1.333 
F7-W5-A1 5/3=1.667 
F7-W4-A1 7/3=2.333 

 
A typical M-Dat geometrical model is shown in Fig. 18.  
 
Comparison between test data and predictions for the body alone are shown in Fig. 19. At 
small angles of attack the two methods overestimate the test data. At angles of attack 
larger than 14.0, the present prediction of the normal-force coefficient is closer to the data 
than that of the M-Dat. The two estimates of the pitching-moment curve are in very good 
agreement, however, their nonlinearity are not as pronounced as that of the test data. This 
accounts for a difference of 0.35 diameters in the center of pressure location. 
 
Preliminary comparison between predictions and test data revealed that the predicted 
normal-force curve slope of configuration F7-W4-A1 is about 28% lower than 
experimentally observed. As a result, the agreement between prediction and test data is 
poor at all angles of attack. Thus, this configuration is not included in the discussion that 
follows. 
 
Fig. 20 contains comparisons between estimates and test data for the configurations with 
the two narrow strakes. The two predictions are very close. The normal-force coefficient 
for configuration with strakes W5 and W6 are very close to test data. The pitching-
moment curves show same trend as body alone, with about the same difference in the 
center of pressure location.  
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Fig. 16: Schematic of the modular body-strake model, from Robinson. 

 

 
Fig. 17: M-Datcom input model for configuration F7-W5-A1. 
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Fig. 18: Cross flow drag coefficient for the configurations of benchmark 4. 
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Fig. 19: Comparison between predictions and test data for the body of benchmark 4, 
a) normal-force coefficient, and b) pitching-moment coefficient. 
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Fig. 20: Comparison between predictions and test data for the body-strake 
combinations of benchmark 4, a) normal-force coefficient. 
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Fig. 20: Comparison between predictions and test data for the body-strake 
combinations of benchmark 4, b) pitching-moment coefficient. 
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Benchmark 5 
Simpson and Birch21 tested a fineness ratio 19.0 body with three very low aspect ratio 
wings. Wing 22, which is actually a strake with b/d=1.6 was selected for this work. A 
schematic of the configuration and the computational model are depicted in Figs. 21 and 
22, respectively. 
 

 

 
Fig. 21: Schematic of benchmark 5 configuration, from Simpson and Birch. 

 
 

 
Fig. 22: Computational model for benchmark 5 configuration. 

 
Comparisons between calculations and test data are presented in Fig. 23. For the body 
alone, the two predictions are very close and in good agreement with the test data. In the 
case of the combination, the present estimate of the normal-force coefficient is in very 
good agreement with the data, while the M-Dat over-predicts it. The predicted center of 
pressure location is more forward than experimentally observed, with small differences 
between the two methods. The maximum gap is about 1.5 body diameters at moderate 
angles of attack and slightly better at higher angles of attack. 
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Fig. 23: Comparison between predictions and test data for benchmark 5, 
a) Normal-force coefficient, and b) center of pressure location. 
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Benchmark 6 
Robinson22 investigated at a Mach number of 2.01 a fineness ratio 10.0 body with several 
wings and controls. Among others, he tested a 5.0 deg delta strake having b/d= 2.07. A 
schematic of that configuration is shown in Fig. 24. 
 
Since b/d>2.0, the strake was divided, lengthwise, into two part. The front one ending at 
body station where b/d=2.0 was analyzed according to the expression developed in 
Appendix A. For the rear part CD2 was considered as cross flow drag coefficient.  
 
Fig. 26 is a comparison between predictions and test data for this configuration. The two 
predictions of the normal-force coefficient are close and match the data, except for the 
present method that slightly overestimates the data past angle of attack of 22.0 deg. There 
is a slight difference between the two estimates of the pitching-moment curve and the 
data. The present method predicts stronger nonlinearity in this curve and better predicts 
the data at high angles of attack.  

 
 
 
 

 
 

Fig. 24: Schematic of body with 5o strake, from Robinson. 

 
 

 
Fig. 25: M-Datcom geometrical model for Benchmark 6. 
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Fig. 26: Comparison between predictions and test data for benchmark 6, 
a) normal-force coefficient, and b)pitching-moment coefficient. 
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Benchmark 7 
Spearman and Robinson23 tested a missile composed of a fineness ratio 10.0 body with 
low aspect ratio wing and aft control. As can be seen form Fig. 27, the control surfaces 
are very close to the trailing-edge of the wing, thus were treated as one unit. The 
geometrical model is depicted in Fig. 28. This benchmark covers Mach numbers of 2.01, 
4.65 and 6.8. 
 
Comparisons between predictions and test data are presented in the three parts of Fig. 29. 
For M=2.01, the two predictions are close and in good agreement with test data. The 
difference in Cm is equivalent to a fraction of body diameter in the center of pressure 
location. For the two high Mach numbers, the analysis overestimates CN and the absolute 
value of Cm. In this case too, the present analysis deviates from the trend of the data as 
Mc=1.0 and higher. 
 

 

 
Fig. 27: Schematic of benchmark 7 configuration, from Spearman and Robinson. 

 
 

 
Fig. 28: M-Datcom input model for benchmark 7. 
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Fig. 29: Comparison between predictions and test data for benchmark 7, 

a) M=2.01. 
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Fig. 29: Comparison between predictions and test data for benchmark 7, 

b) M=4.65. 
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Fig. 29: Comparison between predictions and test data for benchmark 7, 
c) M=6.8. 
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Summary and Remarks 

 
1. The longitudinal characteristics of body-strake configurations were evaluated 

using component buildup approach that features a unified approach for the 
estimation of the vortex induced contributions of both components. The new 
approach uses one cross flow drag coefficient for the part of the body on which 
the strakes are mounted. The basis for the drag model, are empirical data of 
Macha who tested straked cylinders in two-dimensional transonic flow. 
Corrections were made to account for finite body effect and for the cross flow 
drag coefficient of a plain strake at subsonic Mach numbers. 

 
2. A component buildup method was formulated, that combines non viscous and 

viscous contributions to the normal-force and pitching-moment coefficients. For 
the first contribution, the stability derivatives were obtained using the Missile 
Datcom code. A unified analysis was used for the other contribution, using the 
present cross flow drag coefficient model. 

 
3. A pre-processing code was written to obtain the cross flow drag coefficient of 

each case as a function of cross flow Mach number and span to diameter ratio. 
Analytical integration was done for delta strakes where span to diameter ratio 
varies along the chord. 

 
4. The new method was evaluated by comparing predictions with test data 

assembled from the literature. Predictions by the Missile Datcom code were also 
included for additional comparison. In most cases, the agreements between the 
Missile Datcom and the present method are good or very good. In the case of two 
configurations that feature rectangular strakes, the present analysis provides 
estimates that are much closer to test data than those of the Missile Datcom code. 

 
5. In one case, that features a very low aspect ratio strake, the Missile Datcom code 

provided uncertain estimates for the normal-force curve slope of the combination, 
which is attributed to that of strake alone. A hybrid approach that uses generalized 
slender body theory and Missile Datcom characteristics for body alone, 
considerably improved agreement between estimates and test data. 

 
6. The present method gives good estimates as long as the cross flow Mach number 

is smaller than 0.95. At higher values, the predictions deviate from the data and 
the predicted normal-force coefficient is higher than experimentally obtained. 
This may imply that the present cross flow drag coefficient is a little too high at 
low supersonic Mach numbers. It is suggested to use additional test data to adjust 
the present drag model. 

 
7. There is a need for additional test data for body-strake combinations at tri-sonic 

Mach numbers. 
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Appendix A 

 
Tabulated cross flow drag coefficients for finite bodies  

 
Present model for finite length bodies and parameters for the model for body-strake 
combinations. (See Eqn. 1) 
 
CD2 was modified in the subsonic range to account for strake alone cross flow data. 
 

Mc CDo CD1 CD2
0.00 1.202 1.3523 1.9900 
0.04 1.202 1.3523 1.9900 
0.08 1.202 1.3523 1.9900 
0.12 1.204 1.3545 1.9900 
0.16 1.207 1.3579 1.9900 
0.20 1.211 1.3624 1.9900 
0.24 1.219 1.3714 1.9900 
0.28 1.226 1.3793 1.9900 
0.32 1.241 1.3961 1.9900 
0.36 1.260 1.4175 1.9900 
0.40 1.280 1.4400 1.9900 
0.44 1.304 1.4670 1.9980 
0.48 1.338 1.5053 2.0060 
0.52 1.371 1.5424 2.0160 
0.56 1.416 1.5930 2.0280 
0.60 1.470 1.6538 2.0400 
0.64 1.528 1.7190 2.0520 
0.68 1.576 1.7730 2.1118 
0.70 1.580 1.7775 2.1172 
0.72 1.580 1.7775 2.1172 
0.74 1.580 1.7775 2.1172 
0.76 1.580 1.7775 2.1172 
0.78 1.580 1.7775 2.1172 
0.80 1.580 1.7775 2.1172 
0.82 1.580 1.7775 2.1172 
0.84 1.580 1.7775 2.1172 
0.86 1.580 1.7775 2.1172 
0.88 1.580 1.7775 2.1172 
0.90 1.530 1.7213 2.0502 
0.92 1.523 1.7134 2.0408 
0.93 1.521 1.7111 2.0381 
0.94 1.520 1.7100 2.0368 
0.95 1.520 1.7100 2.0368 
0.96 1.520 1.7100 2.0368 
0.98 1.525 1.7156 2.0435 
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Mc CDo CD1 CD2
1.00 1.530 1.7213 2.0502 
1.02 1.545 1.7381 2.0703 
1.04 1.565 1.7606 2.0971 
1.06 1.590 1.7888 2.1306 
1.08 1.635 1.8394 2.1909 
1.10 1.645 1.8506 2.2043 
1.12 1.650 1.8563 2.2110 
1.14 1.650 1.8563 2.2110 
1.16 1.640 1.8450 2.1976 
1.18 1.630 1.8338 2.1842 
1.20 1.610 1.8113 2.1574 
1.24 1.576 1.7730 2.1118 
1.28 1.542 1.7348 2.0663 
1.32 1.516 1.7055 2.0314 
1.36 1.492 1.6785 1.9993 
1.40 1.470 1.6538 1.9698 
1.44 1.450 1.6313 1.9430 
1.48 1.436 1.6155 1.9242 
1.52 1.419 1.5964 1.9015 
1.56 1.408 1.5840 1.8867 
1.60 1.400 1.5750 1.8760 
1.70 1.376 1.5480 1.8438 
1.80 1.359 1.5289 1.8211 
1.90 1.343 1.5109 1.7996 
2.00 1.327 1.4929 1.7782 
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Appendix B 

 
The Non Linear Normal-Force Coefficient of Body-Δ-Strake Combination 

 
 
Objective 
The nonlinear contributions to the normal-force and pitching-moment coefficients as 
formulated in Chapter Analysis are 
 

CN2 = o

ℓ

∫ CDc B dx · sin2α /SR      (B.1.a) 

Cm2 = o

ℓ

∫ CDc B (x-xR) dx · sin2α /(dRSR)     (B.1.b) 
 
Where 
 
  ⎧ CDo for plain body sections, 
 CDc = ⎨         (B.2) 
  ⎩ CDφ for body sections with strakes. 
 
  ⎧ d  for plain body sections, 
 B = ⎨         (B.3) 
  ⎩ s  for body sections with strakes. 
And 

CDφ = (2 – s/d) · CD1 + (s/d – 1) · CD2      (B.3) 
 
The integration of Eqns. (B.1.a) and (B.1.b) will be only performed along the chord. For 
simplicity the range of integration will be from o to c and the reference point will be the 
apex of the strake. The actual location of the strake will be taken into account during 
application. 
 
Define 
 

IN = o

c

∫ CDc B dx        (B.4.a) 

Im = o

c

∫ CDc B x dx        (B.4.b) 
 
 
The local span is related to the maximum span by 
 
 s = d + (b-d)⋅x/c        (B.5) 
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Define            
 
 a = (b-d)/c         (B.6.a) 
 A = (b-d)/d         (B.6.b) 
 
Hence 
 s = d + a⋅x         (B.7.a) 
 s/d = 1 + a⋅x/d        (B.7.b) 
 
Introducing Eqn. (B.7.b) into Eqn. (B.3) and CDc B = CDφ s, yields 
 

CDφ = (1- a⋅x/d) ⋅ CD1 + (a · x/d)  · CD2      (B.8) 
 
Eqns. (B.4) become 
 

IN = o

c

∫ [(1.0-a⋅x/d) · CD1 + (a⋅x/d) · CD2] (d + a⋅x) dx   (B.9.a) 

Im = o

c

∫ [(1.0-a⋅x/d) · CD1 + (a⋅x/d) · CD2] (d + a⋅x) x dx   (B.9.b) 
 
Expanding and integrating these expressions and using definition (B.6.b) gives 
 

IN = (c⋅d)    ⋅ [(1  - ⅓A2) · CD1  + A · (½ + ½A) · CD2 ]             (B.10.a) 
Im = (c2⋅d) ⋅ [(½ - ¼A2) · CD1 + A · (⅓ + ¼A) · CD2 ]             (B.10.b) 
 

Since SR = (π/4) ⋅ d2, this gives 
 
CN2 = (4/π) ⋅ (c/d)⋅IN⋅sin2α                (B.11.a) 
Cm2 = (4/π) ⋅ (c/d)2⋅Im⋅sin2α                (B.11.b) 
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Appendix C:  

Planform Area and Center of Area for Tangent Ogives 
 
Geometry: 
 
Define: 

ℓn

d/2 
R 

Ð

 

f =  ℓn / d (nose fineness ratio) 
F1 =  f 2 + ¼  
F2 = f 2 – ¼ 

 
From the schematic, it is apparent that 
 

sin(θo)  = ℓn / R 
cos(θo) = (R–d / 2) / R  

 
using sin2θ + cos2θ = 1, one obtains  
 

R = F1 · d 
 
 
The Ogive Projection Area 
 
 SS = ½ · θo · R2  (Circular Sector) 
 SΔ = ½ · ℓn · (R–d/2)  (Triangle defined by ogive axis and confining radii) 
Giving 
 Sp = θo · R2 – ℓn · (R–d/2) 
 
In the parametric form 
 
 Sp = d2 · (F1

2 · θo – f · F2) 
 
 
The Ogive Moment of Area relative to the base 
The aera moment relative to the base of the ogive is 
  

MO = o
 
ℓ
 ∫ y(x) · x dx 

 
 x = R sinθ 
 y =  R cosθ – (R–d/2) 
 
 dx =  R cosθ dθ 
 

 MO = o
 
θo

 ∫{R cosθ – (R–d/2)} · R cosθ dθ 
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Integration yields 
 
 MO = ½ R2 · (R–d/2) · (cos(2θo) – 1) – ⅔ R3 · (cos3θo – 1) 
 
 Substituting 2cos2 θo-1 for cos2θo, and replacing R with the parametric form, 
 

MO = d3 ·{ F2 · (F2
2 – F1

2) – ⅔ · (F2
3 – F1

3)} 
 
Normalized form: 
 
The projection area is normalized by the circumscribing rectangle. The center of area is 
normalized by the length of the ogive, and is measured with respect to the base of the 
ogive. 
 
 Sp/( ℓn · d)  =  θo · F1

2 /f – F2  
     
 Xc / ℓn  = MO/(Sp · ℓn)

 = {F2 · (F2
2 – F1

2) – ⅔ · (F2
3 – F1

3)} / {f · (F1
2 · θo – f · F2)} 

 
The normalized forms are presented in Fig. C1. 

 

Tangent Ogive Geometry
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Fig. C1: The normalized projection area and center of area of a tangent ogive. 
 

The asymptotic values are 2/3 for the area ratio and 3/8 for the normalized area center. 
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